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Self-erasing perturbations of Abelian sandpiles
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We investigate generalized seeding of the attracting states of Abelian sandpile automata and find there exists
a class of global perturbations of such automata that are completely removed by the natural local dynamics. We
derive a general form for suctelf-erasing perturbationand demonstrate that they can be highly nontrivial.
This phenomenon provides a different conceptual framework for studying such automata and suggests possible
applications for data protection and encryption.
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I. INTRODUCTION may be applied towards both a general understanding of the
In 1987, Bak, Tang, and Wiesenfel@TW) [1] intro- behavior of _Abelian sandpil_es and possible applications for
duced the scalar sandpile automaton as a prototype for seffata protection and encryption. Section VII suggests the gen-
organized criticality{2], a possible mechanism for the spon- erality of this phenomenon by introducing a related automa-
taneous emergence of temporal and spatial scale invarianéen that displays a similar behavior. We summarize our con-
in many-body systems. While the sandpile automaton maglusions in Sec. VIII.
not be a good model of real sandpiles, it is a useful model of
nonequilibrium statistical mechanics, with many exactly
solvable features, and is related to important problems, in- A. Toppling matrix
cluding resistor networks, the Potts model, and loop-erased

random walkg3]. Thus an understanding of such an automa-SiOEOgSnZ")r"OVV\Yi;FOrSE?g aPsand%Ii %h%r;i Iiﬁ it'o&ﬂjg]'?en'
ton may have implications for a broad range of physical phe: tains th b ; 1272 h hNt  the pile P. at th
nomena. Reflecting this potential, the canonical model introiconsﬁgncs)f the el\lnijsrir':ezruct)o%:}[gﬁ:rl f(ter:ge nt?mbeer %If%réiis atethe
duced by BTW has been studied extensively and generallze{{: site exceeds a critical threshdki> C,, which may differ

in many ways[4]. In one such generalization, Dhgg] de- !

veloped a subclass of scalar sandpiles, which he termed Abggg] S'te tg) Tltf,(;;topplgs S?[ that ?r@r:s arﬁ red|Ttr|bEteﬁxf
lian, because positive point perturbations of the piles—théal ed or deletgaaccording to certain oppiing rules. Follow-
additions of single grains of sand—commute. In fact, the!N9 Dhar[5], we stpre t.he number' of grains to be added or
idea of perturbing such automata with positive point pertur-S“btraCted when thith site topple_s in théth row of a square
atrix A. For example, the toppling rules for a four-site one-

bations has been widely employed, as it aptly and simpl;}T.‘ . . .
illustrates the emergence of global effects on the pile fromi'?ints.'dqnal B-II—W tsgndplle automaton are stored in the
the operation of the local rules at each site. While these ridragonal matrix,

Il. ABELIAN RULES

perturbations have typically been applied randomly, interest- 2 -1.0 0

ing effects emerge even if grains are added deterministically, 1 2 -1 0

for example, only to the center sié]. Agrw = . (1)
In this paper, we study the consequences of perturbing 0 -1 2 -1

Abelian sandpiles in more complicated ways, including those O 0 -1 2

involving the concurrent additioand subtraction ofmultiple i ) . )
grains atmultiple sites. In particular, we study one specific W& define therelaxation of a pile to be the successive top-

emergent phenomenon of such generalized “seedingp"r,‘g of all sypercritical sites until every site i§ subcritical.
Namely, we investigate a class of nontrivigibbal perturba-  USing the unit row vectoe, to select the appropriate rule, we
tions of attracting piles that are completely removed by thefenote the toppling of thih site by

naturallocal dynamics of the piles. We derive a general form T(P)=P-eA, (2)
for theseself-erasing perturbation§SEP’Y, employ them to

better understand the behaviors of the sandpiles, and illugnd the relaxation of the pile by

trate hoyv such _perturbations might be used to protect or R(P)=P-nA=A, 3)
encrypt information.

The paper is organized in the following way. Section Il wheren is a row vector whoséh column contains the num-
motivates and derives the Abelian restriction on the sandpiléer of topples), occurring at theth site during the relaxation
rules in prelude to the derivation of a general form for SEP’sof the supercritical pilé® to the subcritical pileA.
on Abelian sandpile attractors in Sec. Ill. Section IV demon-
strates annward shift invarianceof BTW sandpile attrac-
tors, a special and provocative example of SEP’s. Sections V For generald, a supercritical state may relax to a stable
and VI suggest the possible ways in which this phenomenosubcritical pile, or diverge to infinity, or cycle among mul-

B. Abelian constraints
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tiple configurations. Furthermore, the outcome may depentermed self-erasing because the natural relaxation of the pile
on theorder in which the supercritical sites are toppled. For completely removes all trace of them. From E8), if R(A
example, synchronous toppling and random toppling may re+ sA)=A, then SA=nA. Thus all self-erasing perturbations
lax a supercritical pile to different subcritical piles. It is cru- are whole number combinations of the toppling rules of the
cial for what follows that any supercritical state relaxes to asandpile.
subcritical staténdependendf toppling order. Consequently, However, for Abelian sandpiles, it is also conversely true
we constrainA to guarantee this Abelian property. that every perturbation of this form is self-erasing. To dem-
First, in order for a supercritical pile to become subcriti- onstrate this, we recognize that for every attragtopthere is
cal, toppling a supercritical site must tend to remove grain supercritical pileP such thatR(P)=A. We then perturtP
from that site. Hence we require with nA, wheren;= 0. Because the sandpile is Abelian, any
A >0 (4a) toppling order will produce the same final relaxed state. In
. ' particular, we can choose to topple such that the addes
Also, because the total number of grains in a supercriticatemovedfirst, so that it relaxes to the intermediary pit
pile is greater than the total number of grains in a subcriticaR(P+nA)=R(P). Alternately, we can choose to topple such
pile, the toppling rules must have a way to remove grainsthat the addedA is initially ignored and let it “ride down”
We require that at each site the rule be either conservative @s the rest of the pile relaxes to the original subcritical pile,

dissipative(and not generatiye R(P+nA)=R(A+nA). Combining these results, we get
R(A+nA)=R(P+nA)=R(P)=A. Hence, for all attractoré,
> A =0, (4b)
i R(A+5A)=A, (6
while we demand thadverall the toppling rules be dissipa- for all perturbationsSA such that
tive,
SA =nA, n;=0. (6b)
; ; A >0. (49 Thus not only are all self-erasing perturbations whole num-

ber combinations of the toppling rules, but all such combi-
Next, we must avoid oscillations in the relaxation. These camations are self-erasing perturbations. These self-erasing per-
occur if, during the relaxation, some piR occurs multiple turbations can be understood as dynamic realizations of the
times. In analogy with Eq(3), this implies thatP’=P’ equivalence classes introduced by DF&ir
-nA or nA=0. However, if the columns oA are linearly Although Eq.(6) may seem obvious in retrospect, it is in
independent, this equation will only have the trivial solution, fact falsefor mosttoppling rulesA and true for the relatively
and oscillations will be prevented. Equivalently, we requirefew toppling rules that are Abelian. Furthermore, as demon-
that strated below these perturbations can be quite nontrivial, in-
volving large global changes to a pile. Removalgibbal

det4) # 0. (4d) perturbations by solel§ocal rules is one of the distinctive
The restrictions of Eq(4) are sufficient to ensure that a features of this phenomenon. .
supercritical pile relaxes to a stable subcritical g Figure 1 illustrates the nontrivial nature of self-erasing

Finally, in order for the relaxation to be robust with re- perturbations for a one-dimensional pile relaxing according
spect to the order of toppling, toppling at one site cannoto the BTW rules. The grays code pile heights, and time
interfere with the possibility of toppling at another site. Thusincreases downward. In the left parta), a supercritical pile
we require that toppling at one site does not remove grainkelaxes to a subcritical pile. In the right pargb), this attrac-

from other sites, and our final condition dnis tor is seeded six times with different perturbatiors, and in
o each case the pile returns exactly to the original attractor.
Aj=<0,j#i. (5 Note the complicated relaxation that is sometimes needed to

remove these perturbations.

Since a finite-sized sandpile of any dimension can be in-
dexed as a one-dimensional automaton with nonlocal com-
munication among the sites, the above behavior will also
exist in every automaton that satisfies the Abelian restrictions
Ill. SELF-ERASING PERTURBATIONS on A, regardless of the spatial orientation one assigns to the
sites. As an example, in Fig. 2, we perturb a generic two-

dimensional BTW attractor with a generic SBR formed

critigal pile_relaxed from a supercritical pi[é)]: In ggneral, from a large randorm with Sn,=10f. The perturbation re-
adding grains to an attractor and then relaxing will producqaxes leaving the attractor unéhangéd

another attractor while subtracting grains risks creating a
state to which no supercritical pile will relax. However, sub-

tractions made concurrently with additions may still aIIov_v IV INWARD SHIET INVARIANCE

the pile to relax to another attractor. More strongly, certain

such “mixed” perturbations may actually map an attractor A special and provocative example of SEP’sinsvard
back to itself. These are the perturbations that we havshifts a subclass of SEP’s for two-dimensional BTW sand-

These constraintg8] are equivalent to those introduced by
Dhar [5] for the Abelian class, and we hereafter limit our
discussion to Abelian sandpiles.

Under these conditions, define attractor to be a sub-
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FIG. 3. Rectangular perturbatigformed by moving grains one
site inward across a rectangular boundaoy a generic attractor
(formed by relaxing a generic supercritical pil@he perturbations
relax under two-dimensional BTW rules in a highly nontrivial way,
(?eaving the attractor unchanged. Grays code heights and colors
line) code differences from original pile, with reds lower and blues
piles. Inward shifts can be described simply yet demonstratgigher. (8—(f) Perturbation superimposed on the attractgy~()
nicely the complicated spatiotemporal evolution that can acPerturbation only.
company SEP’s. They are special, simple cases of generic
SEPNA, wheren;=1 for all sites inside a closed region and  Figures 3-5 illustrate inward shift invariance for three dif-
n,=0 for all sites outside the region. Due to the specific formferent perturbations of three qualitatively different attractors.
of the BTW rule, the perturbations to sites in the interior Figure 3 summarizes the relaxation of a rectangular pertur-

cancel, and the SEP can be generated by simply shifting
grains one site inward across every segment of the boundary. . . -
L] i

Furthermore, such SEP can be superposed.

FIG. 1. (@) The relaxation of a supercritical one-dimensional
sandpile according to the BTW ruleg) The subsequent relax-
ations of six different self-erasing perturbatiom& (introduced at
the arrows to the same attractor. Grays code pile heights, and tim
increases downward.

c
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FIG. 4. Circular perturbationsformed by moving grains one

FIG. 2. Generic self-erasing perturbatina (with =n,=10% of site inward across all segments of circular boundarafsa pat-
a generic attractoformed by relaxing a generic supercritical terned attractofformed by relaxing a flat supercritical pjleThe
64X 64 pile). The perturbations relax under two-dimensional BTW perturbations relax under BTW rules leaving the attractor un-
rules leaving the attractor unchangéa)—(f) Perturbation superim- changed(a)—(f) Perturbation superimposed on the attractgr()
posed on the attractofg)—(l) Perturbation only. Perturbation only.

016203-3



MOFFITT, MACDONALD, AND LINDNER PHYSICAL REVIEW E 70, 016203(2004)

numberm; at sitei is the smallest integer that solves
=me A~ such that all components of are whole numbers.
BecauseA is a matrix of whole numbers, its inverse can be
decomposed into a determinant scaling factor and a matrix

A~ whose elements are all integers. Thus this constraint be-

d comes

"~ detA)

Since the Markov numbem, is also the number of discrete
states through which an evolution of the sandpile will pass, it
is sufficient that def\) be themaximumnumber of interme-
diate states in the evolution, and hence the number of attract-
ing states of the sandpile.

The SEP approach also provides useful insight into the

i k |

< v development of necessafgs well as sufficientconditions
on the toppling rules to guarantee that the sandpile is well
D . behaved and Abelian. According to K@), theith column of

A™lis simply the history vector for Markov addition at tré
site scaled by the corresponding Markov numbaAr;*
=[ny/my,ny/my, ... ,ny/My]. Thus a necessary condition for
a sandpile to be well behaved and Abelian is clearly

FIG. 5. “P"-shaped perturbatiofiormed by moving grains one
site inward across the boundaries of the Igttéran image attractor
(formed by using a black-and-white image as a mask to remov

single grains from a critical pile The perturbations relax under A—lij =0, (8)
BTW rules leaving the attractor unchangéa—f) Perturbation su- ) )
perimposed on the attractag)—() Perturbation only. which supplements the work of Gabriel9].

SEP’s also suggest a simple alternative to the attractor
};]esting algorithms proposed by Dhar and Speer. Instead of

bation of a generic attractor, Fig. 4 summarizes the relaxatiorecursively searching for forbidden subconfiguratigBisor
of a circular perturbation of a patterned attracfd®], and “scripts” [11], one can exploit the fact that the SEP is a

Fig. 5 summarizes the relaxation of a patterned perturbationhenomenon of the attracting set onlv. For examole. an ef-
of an image attracto(As we further discuss in Sec. VI, any P 9 y. P,

black-and-white image can be mapped into a canonical BT\/\fgCt've attractor-testing algorithm might involve applying an

attractor by using the image as a mask to remove a sing| EP dto_la _s,ug.(]:cfrmcalt ?'Ie a;r;\d aIIloyvmlg '.ﬁ toﬂzelai[(r.] If the. rei
layer of grains from a pile of critical heightThe compli- axed prie Is diterent from the orginal prie, then the origina

cated evolution that accompanies each relaxation is a haIP'IEf, IS not an attr_actor. Goc_)d test SERssich as the cover-
mark of SEP's. ing” nA,wheren;=1 for all i) would encourage toppling at

every site.
However, if one wants to enumerate explicitly the set of
V. CONCEPTUAL BENEFITS attractors for a given toppling rule, testing individual sub-

While SEP’s supply a simple conceptual framework incfitical piles with standard algorithms will become prohibi-
which to understand phenomena like the inward shift invaritive as the pile size increases. Fortunately, since SEP's is a
ance of the BTW attractors, SEP’s also provide an alternativeroperty of the attracting set only, by finding pile configura-
viewpoint for analyzing and elucidating the general behaviotions that will cause simple SEP's to fail, one can identify
of Abelian sandpile automata. To demonstrate this, considdroad classes of subcritical piles that are not attractors. For
some notable results concerning such automata. [dras ~ €xample, in the one-dimensional BTW sandpile, any SEP
demonstrated that theumberof attracting piles is simply the With nj=1 for two adjacent sites will fail on subcritical piles
determinant of the toppling matris, and that there exists With Pi=Cj—1 grains at those sites; thus any subcritical pile
someMarkov recurrence numbeof grains that, when added With such a configuration of pile heights will not be an at-
to a single site of any attractor, will cause the pile to relaxtractor. For large sandpiles, enumerating attractors by elimi-
back to itself. Gabrielo\{9] has discussed necessapd  Nating those with chara'ct'erlstlcs that cause certain SEP’s to
sufficient conditions on the toppling rules for a sandpile to befail may prove more efficient than recursive algorithms.
Abelian. Both Dhar{5] and Speef11] have developed re-
cursive algorithms to directly test if a given subcritical pile is VI. APPLICATIONS
an attractor. Using simple SEP arguments, we can readily
recover many of these results.

In the SEP framework, single site Markov perturbations The remarkable resistance of Abelian sandpile attractors
are just another specific type of SEP. Thus for a given Marto a wide class of perturbations, as illustrated in Secs. Ill and
kov numberm; at a specific site there existsn such that IV, suggests several possible applications. We speculate on
nA=me. This allowsm, to be found exactly. The Markov two possibilities here: the protection and encryption of data.

A. Encoding information
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In both cases, information must be associated with attracting
states. Furthermore, no matter how complicated or simple
the desired method of encoding, it must address the restric-
tive nature of the attracting set in the choice of toppling
rules.
Naively, one might expect that each site of a one-
dimensionaN-site BTW attractor could have eith€-1 or
C, grains, and a good encoding scheme might be to associate
each site with a binary digit 0 or 1 of axdigit binary word
of data. However, simple SEP analysis demonstrates that the
attractors are actually restricted to piles that haeemore
than one site withC;—1 grains(with all the rest havingC;
graing. Thus instead of theattractors needed to encode an
arbitrary N-digit binary word, a one-dimensional-site
BTW sandpile has onl\N+1 attractors(While this restric-
tion may complicate the association of information with at-
tractors, it may also be desirable in certain applicatjons.
However, straightforward SEP analysis also demonstrates
that two-dimensionalN-site BTW sandpiles can encode any
N-digit binary word in anN-site pile because all"2piles B
with B, e {C;—1,C;} are indeed attractors. Furthermore, these ) ) )
rules can be modified to encode any level of information by G- 6- (@ A grayscale image encoded, as a three-dimensional

: : : Ipture, in a 128 128 attractor(b) The attractor corrupted by a
appropriately scaling the toppling rules. Ak, represents >°Y iy
thpep tWF:)- dimgnsiona? BTW rﬂ?es % nd is a S\mlole ?wmber random superpositionA of scaled BTW rules(c)—(f) The natural

. . . dynamics of the sandpile heals the corrupted attractor. Grays code
then the attracting set &’ =aAgny With C/ =aC; includes : . : - . :
. . heights and colorgonline) code differences from original pile, with
all (20N piles B’ with B/ e{aC-2a+1,aC-2a 9 online) ginatp

. . reds lower and blues higher.
+2,...,aC}. Thus if the unscaled sandpile encodes two lev-

e:s Off mf}grmat;pn, t?er:hthef silcalgd sandpllel encode$e- th random combination of scaled BTW rules. The perturbation
els of information. n the following examples, we use the;q complicated enough to obscure the information stored in

S?alﬁd pr—ﬁ;menspnall BTW ru:es tci enc?r:jet a large rangg,e attractor, thereby encrypting it. Decrypting this informa-
or pile heights as pixel grayscale values that COmpose IMg - o trivial if one knows theA with which the information

ages. was corrupted: simply relax the pile. However, without the
B. Data protection properA, relaxation does not restore the image. We illustrate

The resilience of attractors to large perturbations suggestthIS In Fig. 7 by relaxing the encrypted image witislaghtly

. o ) dhfferent A. (Instead of removing 40 grains during each
the pOS'SI'bI|Ity of _explomng SEP’s to protect data. For eX'topple, the toppling ruld’ removes 41; this additional grain
ample, if information were encoded in the attractor of a sand-
pile, and this sandpile were coupled to its environneately
via the addition of whole number combinations of the top-
pling rulesnA, the information would be completely robust
to all outside influence, including noise. In fact, given suffi-
cient time, the natural dynamics would heal the perturbed
attractor of all corruptions.

We demonstrate this self-healing property in Fig. 6, where b ERERRR
the information of a 20-level gray scale image is encoded by e
manipulating the heights of the sites in the pile. To ensure
that this is an attractor of our sandpile, we use the two-
dimensional BTW rules scaled by a factor®f 10. Specifi-
cally, the brightness of each site in Fig. 6 is proportional to :
the number of grains at that site, resulting in a three-
dimensional sculpture of the image. We then corrupt this
image in the second fram@) by adding a random whole
number combination of scaled BTW rules. In the subsequent
relaxation processgc)—(f), the sandpile completely heals it-
self of this corruption demonstrating the basic efficacy of this
phenomenon. FIG. 7. (a) A grayscale image encoded in an attractor, as in

. Fig. 6.(b) The attractor corrupted by a random superpositidnof
C. Data encryption scaled BTW ruleqthereby saturating our fixed grayscale palette

This property also suggests a method of encryption. Inc)~f) The sandpile relaxes viglightly different toppling rulesA’

Fig. 7, the same image has been corrupted, again by adding@an unrecognizable attractor.

a d
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is then passed to the site on the right, destroying the symmehe critical value, reduce the site by one. Furthermore, we
try of the originalA.) Although this is only a slight modifi- expect that self-erasing perturbations exist for generalized
cation, the final state does not resemble the original imageAbelian sandpiles, such as those studied by Chau and Cheng
SinceA can in general be highly nontrivial, with significant [12].
amounts of nonlocal communication, it may be possible to
exploit the cryptographic properties of this phenomenon to VIIl. CONCLUSIONS
produce an efficient and effective encryption scheme. In par-
ticular, the decoding could be done in parallel via distributed By generalizing the traditional seeding of Abelian sand-
processors, precisely because the Abelian nature of the topile automata, we have revealed an interesting phenomenon,
pling makes the order of toppling irrelevant. Furthermore,the existence of a broad and flexible class of nontrivial self-
the transformation matriXA could be encoded at the hard- erasing perturbations. We have shown how the conceptual
ware level. Fast distributed processing in hardware makeamework provided by SEP is useful in the study of these
straightforward evolution a practical alternative to imple-automata. Furthermore, our demonstration of another au-
menting a truly a vast lookup table connecting inputs andomaton that also displays SEP’s suggests that this phenom-
outputs for the sandpile automaton considered as a finitesnon may prove more broadly applicable.
state machine. More practically, SEP’s might be used to secure informa-
tion. SEP’s provide a mechanism by which data might be
VIl. SUPERPILES protected from certain types of noise through the self-healing
properties of the sandpile attractors. By recognizing that the
Self-erasing perturbations are not confined to Abelianaddition of noise can be an encryption mechanism, this abil-
sandpile automata. For example, there exists a class @ to self-heal becomes an ability to decode encrypted infor-
related cellular automata for which the addition of any com-mation, provided one has the correct toppling rulesthe
bination of positivepoint perturbations is self-erasing. For key to the encryption. More speculatively, if practical physi-
every sandpileP, define the correspondinguperpile Q  cal analogs could be found, this phenomenon might enable
such that Q=PA™~. Mirroring the sandpile toppling the construction of machines that are impervious to normal
Pi= PQ >C;0 T(P)=P-gA, define the superpile toppling wear and tear. The operation of such machines would be
QAe'>C;0 T(Q)=Q-e. Thus for every self-erasing per- dynamical attractors whose basin of attraction would include
turbationnA of the sandpile, there is a corresponding self-all perturbations away from nominal performance.
erasing perturbation of the superpile. Therefore a superpile
attractor is robust tall positive perturbations—making them
more promising candidates for the robust encoding of infor-
mation than sandpiles. Although the superpile thresholding We thank K. Wiesenfeld for helpful discussions. This re-
may appear complicated, it is easy to describe the BTWsearch was supported in part by NSF Grant No. DMR-99-
superpile toppling: if the discrete Laplacian at a site exceed87850 and The College of Wooster.

ACKNOWLEDGMENTS

[1] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&8, 381 65, 949(1990.
(1987; Phys. Rev. A38, 364(1988. [71 We have observead that violate Eq.(4b) yet still display
[2] For two different views of self-organized criticality, consider Abelian properties, so these constraints are sufficient but not
Per Bak, How Nature Works(Springer-Verlag, New York, necessary.
1996 and R. Dickman, M. A. Mufioz, A. Vespignani, and S. [8] For further insight into Abelian constraints for related au-
Zapperi, e-print cond-mat/9910454. tomata, consult A. Gabrielov, Physica 295, 253(1993.
[3] D. Dhar, e-print cond-mat/9909009. [9] There is a one-to-one correspondence between our attractors
[4] To date, BTW'’s seminal paper has garnered over 700 citations  and Dhar’s recurrent states.
in the Physical Revievalone. [10] S. Ostojic, Physica A318 187 (2003.
[5] D. Dhar, Phys. Rev. Lett64, 1613(1990. [11] E. R. Speer, J. Stat. Phyg1, 61 (1993.

[6] K. Wiesenfeld, J. Theiler, and B. McNamara, Phys. Rev. Lett.[12] H. F. Chau and K. S. Cheng, J. Math. Phygl, 5109(1993.

016203-6



