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We investigate generalized seeding of the attracting states of Abelian sandpile automata and find there exists
a class of global perturbations of such automata that are completely removed by the natural local dynamics. We
derive a general form for suchself-erasing perturbationsand demonstrate that they can be highly nontrivial.
This phenomenon provides a different conceptual framework for studying such automata and suggests possible
applications for data protection and encryption.
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I. INTRODUCTION

In 1987, Bak, Tang, and Wiesenfeld(BTW) [1] intro-
duced the scalar sandpile automaton as a prototype for self-
organized criticality[2], a possible mechanism for the spon-
taneous emergence of temporal and spatial scale invariance
in many-body systems. While the sandpile automaton may
not be a good model of real sandpiles, it is a useful model of
nonequilibrium statistical mechanics, with many exactly
solvable features, and is related to important problems, in-
cluding resistor networks, the Potts model, and loop-erased
random walks[3]. Thus an understanding of such an automa-
ton may have implications for a broad range of physical phe-
nomena. Reflecting this potential, the canonical model intro-
duced by BTW has been studied extensively and generalized
in many ways[4]. In one such generalization, Dhar[5] de-
veloped a subclass of scalar sandpiles, which he termed Abe-
lian, because positive point perturbations of the piles—the
additions of single grains of sand—commute. In fact, the
idea of perturbing such automata with positive point pertur-
bations has been widely employed, as it aptly and simply
illustrates the emergence of global effects on the pile from
the operation of the local rules at each site. While these
perturbations have typically been applied randomly, interest-
ing effects emerge even if grains are added deterministically,
for example, only to the center site[6].

In this paper, we study the consequences of perturbing
Abelian sandpiles in more complicated ways, including those
involving the concurrent additionandsubtraction ofmultiple
grains atmultiple sites. In particular, we study one specific
emergent phenomenon of such generalized “seeding.”
Namely, we investigate a class of nontrivialglobal perturba-
tions of attracting piles that are completely removed by the
naturallocal dynamics of the piles. We derive a general form
for theseself-erasing perturbations(SEP’s), employ them to
better understand the behaviors of the sandpiles, and illus-
trate how such perturbations might be used to protect or
encrypt information.

The paper is organized in the following way. Section II
motivates and derives the Abelian restriction on the sandpile
rules in prelude to the derivation of a general form for SEP’s
on Abelian sandpile attractors in Sec. III. Section IV demon-
strates aninward shift invarianceof BTW sandpile attrac-
tors, a special and provocative example of SEP’s. Sections V
and VI suggest the possible ways in which this phenomenon

may be applied towards both a general understanding of the
behavior of Abelian sandpiles and possible applications for
data protection and encryption. Section VII suggests the gen-
erality of this phenomenon by introducing a related automa-
ton that displays a similar behavior. We summarize our con-
clusions in Sec. VIII.

II. ABELIAN RULES

A. Toppling matrix

Formally, we represent a sandpile of any spatial dimen-
sion as a row vectorP=hP1,P2, . . . ,PNj whoseith column
contains the number of grains(or height of the pile) Pi at the
ith site of theN-site automaton. If the number of grains at the
ith site exceeds a critical thresholdPi .Ci, which may differ
from site to site, ittopples, so that grains are redistributed(or
added or deleted) according to certain toppling rules. Follow-
ing Dhar [5], we store the number of grains to be added or
subtracted when theith site topples in theith row of a square
matrix D. For example, the toppling rules for a four-site one-
dimensional BTW sandpile automaton are stored in the
434 tridiagonal matrix,

DBTW = 3
2 − 1 0 0

− 1 2 − 1 0

0 − 1 2 − 1

0 0 − 1 2
4 . s1d

We define therelaxationof a pile to be the successive top-
pling of all supercritical sites until every site is subcritical.
Using the unit row vectorei to select the appropriate rule, we
denote the toppling of theith site by

TsPd = P − eiD, s2d

and the relaxation of the pile by

RsPd = P − nD = A , s3d

wheren is a row vector whoseith column contains the num-
ber of topplesni occurring at theith site during the relaxation
of the supercritical pileP to the subcritical pileA.

B. Abelian constraints

For generalD, a supercritical state may relax to a stable
subcritical pile, or diverge to infinity, or cycle among mul-
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tiple configurations. Furthermore, the outcome may depend
on theorder in which the supercritical sites are toppled. For
example, synchronous toppling and random toppling may re-
lax a supercritical pile to different subcritical piles. It is cru-
cial for what follows that any supercritical state relaxes to a
subcritical stateindependentof toppling order. Consequently,
we constrainD to guarantee this Abelian property.

First, in order for a supercritical pile to become subcriti-
cal, toppling a supercritical site must tend to remove grains
from that site. Hence we require

Dii . 0. s4ad

Also, because the total number of grains in a supercritical
pile is greater than the total number of grains in a subcritical
pile, the toppling rules must have a way to remove grains.
We require that at each site the rule be either conservative or
dissipative(and not generative),

o
j

Di j ù 0, s4bd

while we demand thatoverall the toppling rules be dissipa-
tive,

o
i

o
j

Di j . 0. s4cd

Next, we must avoid oscillations in the relaxation. These can
occur if, during the relaxation, some pileP8 occurs multiple
times. In analogy with Eq.(3), this implies thatP8=P8
−nD or nD=0. However, if the columns ofD are linearly
independent, this equation will only have the trivial solution,
and oscillations will be prevented. Equivalently, we require
that

detsDd Þ 0. s4dd

The restrictions of Eq.(4) are sufficient to ensure that a
supercritical pile relaxes to a stable subcritical pile[7].

Finally, in order for the relaxation to be robust with re-
spect to the order of toppling, toppling at one site cannot
interfere with the possibility of toppling at another site. Thus
we require that toppling at one site does not remove grains
from other sites, and our final condition onD is

Di j ø 0, j Þ i . s5d

These constraints[8] are equivalent to those introduced by
Dhar [5] for the Abelian class, and we hereafter limit our
discussion to Abelian sandpiles.

III. SELF-ERASING PERTURBATIONS

Under these conditions, define anattractor to be a sub-
critical pile relaxed from a supercritical pile[9]. In general,
adding grains to an attractor and then relaxing will produce
another attractor while subtracting grains risks creating a
state to which no supercritical pile will relax. However, sub-
tractions made concurrently with additions may still allow
the pile to relax to another attractor. More strongly, certain
such “mixed” perturbations may actually map an attractor
back to itself. These are the perturbations that we have

termed self-erasing because the natural relaxation of the pile
completely removes all trace of them. From Eq.(3), if RsA
+dAd=A, then dA =nD. Thus all self-erasing perturbations
are whole number combinations of the toppling rules of the
sandpile.

However, for Abelian sandpiles, it is also conversely true
that every perturbation of this form is self-erasing. To dem-
onstrate this, we recognize that for every attractorA, there is
a supercritical pileP such thatRsPd=A. We then perturbP
with nD, whereni ù0. Because the sandpile is Abelian, any
toppling order will produce the same final relaxed state. In
particular, we can choose to topple such that the addednD is
removedfirst, so that it relaxes to the intermediary pileP,
RsP+nDd=RsPd. Alternately, we can choose to topple such
that the addednD is initially ignored and let it “ride down”
as the rest of the pile relaxes to the original subcritical pile,
RsP+nDd=RsA +nDd. Combining these results, we get
RsA +nDd=RsP+nDd=RsPd=A. Hence, for all attractorsA,

RsA + dAd = A , s6ad

for all perturbationsdA such that

dA = nD, ni ù 0. s6bd

Thus not only are all self-erasing perturbations whole num-
ber combinations of the toppling rules, but all such combi-
nations are self-erasing perturbations. These self-erasing per-
turbations can be understood as dynamic realizations of the
equivalence classes introduced by Dhar[5].

Although Eq.(6) may seem obvious in retrospect, it is in
fact falsefor mosttoppling rulesD and true for the relatively
few toppling rules that are Abelian. Furthermore, as demon-
strated below these perturbations can be quite nontrivial, in-
volving large global changes to a pile. Removal ofglobal
perturbations by solelylocal rules is one of the distinctive
features of this phenomenon.

Figure 1 illustrates the nontrivial nature of self-erasing
perturbations for a one-dimensional pile relaxing according
to the BTW rules. The grays code pile heights, and time
increases downward. In the left panel(a), a supercritical pile
relaxes to a subcritical pile. In the right panel(b), this attrac-
tor is seeded six times with different perturbationsnD, and in
each case the pile returns exactly to the original attractor.
Note the complicated relaxation that is sometimes needed to
remove these perturbations.

Since a finite-sized sandpile of any dimension can be in-
dexed as a one-dimensional automaton with nonlocal com-
munication among the sites, the above behavior will also
exist in every automaton that satisfies the Abelian restrictions
on D, regardless of the spatial orientation one assigns to the
sites. As an example, in Fig. 2, we perturb a generic two-
dimensional BTW attractor with a generic SEPnD formed
from a large randomn with oni =104. The perturbation re-
laxes leaving the attractor unchanged.

IV. INWARD SHIFT INVARIANCE

A special and provocative example of SEP’s isinward
shifts, a subclass of SEP’s for two-dimensional BTW sand-
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piles. Inward shifts can be described simply yet demonstrate
nicely the complicated spatiotemporal evolution that can ac-
company SEP’s. They are special, simple cases of generic
SEPnD, whereni =1 for all sites inside a closed region and
ni =0 for all sites outside the region. Due to the specific form
of the BTW rule, the perturbations to sites in the interior
cancel, and the SEP can be generated by simply shifting
grains one site inward across every segment of the boundary.
Furthermore, such SEP can be superposed.

Figures 3–5 illustrate inward shift invariance for three dif-
ferent perturbations of three qualitatively different attractors.
Figure 3 summarizes the relaxation of a rectangular pertur-

FIG. 1. (a) The relaxation of a supercritical one-dimensional
sandpile according to the BTW rules.(b) The subsequent relax-
ations of six different self-erasing perturbationsnD (introduced at
the arrows) to the same attractor. Grays code pile heights, and time
increases downward.

FIG. 2. Generic self-erasing perturbationnD (with oni =104) of
a generic attractor(formed by relaxing a generic supercritical
64364 pile). The perturbations relax under two-dimensional BTW
rules leaving the attractor unchanged.(a)–(f) Perturbation superim-
posed on the attractor.(g)–(l) Perturbation only.

FIG. 3. Rectangular perturbation(formed by moving grains one
site inward across a rectangular boundary) of a generic attractor
(formed by relaxing a generic supercritical pile). The perturbations
relax under two-dimensional BTW rules in a highly nontrivial way,
leaving the attractor unchanged. Grays code heights and colors(on-
line) code differences from original pile, with reds lower and blues
higher. (a)–(f) Perturbation superimposed on the attractor.(g)–(l)
Perturbation only.

FIG. 4. Circular perturbations(formed by moving grains one
site inward across all segments of circular boundaries) of a pat-
terned attractor(formed by relaxing a flat supercritical pile). The
perturbations relax under BTW rules leaving the attractor un-
changed.(a)–(f) Perturbation superimposed on the attractor.(g)–(l)
Perturbation only.
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bation of a generic attractor, Fig. 4 summarizes the relaxation
of a circular perturbation of a patterned attractor[10], and
Fig. 5 summarizes the relaxation of a patterned perturbation
of an image attractor.(As we further discuss in Sec. VI, any
black-and-white image can be mapped into a canonical BTW
attractor by using the image as a mask to remove a single
layer of grains from a pile of critical height.) The compli-
cated evolution that accompanies each relaxation is a hall-
mark of SEP’s.

V. CONCEPTUAL BENEFITS

While SEP’s supply a simple conceptual framework in
which to understand phenomena like the inward shift invari-
ance of the BTW attractors, SEP’s also provide an alternative
viewpoint for analyzing and elucidating the general behavior
of Abelian sandpile automata. To demonstrate this, consider
some notable results concerning such automata. Dhar[5] has
demonstrated that thenumberof attracting piles is simply the
determinant of the toppling matrixD, and that there exists
someMarkov recurrence numberof grains that, when added
to a single site of any attractor, will cause the pile to relax
back to itself. Gabrielov[9] has discussed necessaryand
sufficient conditions on the toppling rules for a sandpile to be
Abelian. Both Dhar[5] and Speer[11] have developed re-
cursive algorithms to directly test if a given subcritical pile is
an attractor. Using simple SEP arguments, we can readily
recover many of these results.

In the SEP framework, single site Markov perturbations
are just another specific type of SEP. Thus for a given Mar-
kov numbermi at a specific sitei there existsn such that
nD=miei. This allowsmi to be found exactly. The Markov

number mi at site i is the smallest integer that solvesn
=mieiD

−1 such that all components ofn are whole numbers.
BecauseD is a matrix of whole numbers, its inverse can be
decomposed into a determinant scaling factor and a matrix

D̃−1 whose elements are all integers. Thus this constraint be-
comes

n = mieiD
−1 =

mi

detsDd
eiD̃

−1. s7d

Since the Markov numbermi is also the number of discrete
states through which an evolution of the sandpile will pass, it
is sufficient that detsDd be themaximumnumber of interme-
diate states in the evolution, and hence the number of attract-
ing states of the sandpile.

The SEP approach also provides useful insight into the
development of necessary(as well as sufficient) conditions
on the toppling rules to guarantee that the sandpile is well
behaved and Abelian. According to Eq.(7), theith column of
D−1is simply the history vector for Markov addition at theith
site scaled by the corresponding Markov number,D−1

=fn1/m1,n2/m2, . . . ,nN/mNg. Thus a necessary condition for
a sandpile to be well behaved and Abelian is clearly

D−1
i j ù 0, s8d

which supplements the work of Gabrielov[9].
SEP’s also suggest a simple alternative to the attractor

testing algorithms proposed by Dhar and Speer. Instead of
recursively searching for forbidden subconfigurations[5] or
“scripts” [11], one can exploit the fact that the SEP is a
phenomenon of the attracting set only. For example, an ef-
fective attractor-testing algorithm might involve applying an
SEP to a subcritical pile and allowing it to relax. If the re-
laxed pile is different from the original pile, then the original
pile is not an attractor. Good test SEP’s(such as the “cover-
ing” nD,whereni =1 for all i) would encourage toppling at
every site.

However, if one wants to enumerate explicitly the set of
attractors for a given toppling rule, testing individual sub-
critical piles with standard algorithms will become prohibi-
tive as the pile size increases. Fortunately, since SEP’s is a
property of the attracting set only, by finding pile configura-
tions that will cause simple SEP’s to fail, one can identify
broad classes of subcritical piles that are not attractors. For
example, in the one-dimensional BTW sandpile, any SEP
with ni =1 for two adjacent sites will fail on subcritical piles
with Pi =Ci −1 grains at those sites; thus any subcritical pile
with such a configuration of pile heights will not be an at-
tractor. For large sandpiles, enumerating attractors by elimi-
nating those with characteristics that cause certain SEP’s to
fail may prove more efficient than recursive algorithms.

VI. APPLICATIONS

A. Encoding information

The remarkable resistance of Abelian sandpile attractors
to a wide class of perturbations, as illustrated in Secs. III and
IV, suggests several possible applications. We speculate on
two possibilities here: the protection and encryption of data.

FIG. 5. “P”-shaped perturbation(formed by moving grains one
site inward across the boundaries of the letter) of an image attractor
(formed by using a black-and-white image as a mask to remove
single grains from a critical pile). The perturbations relax under
BTW rules leaving the attractor unchanged.(a)–(f) Perturbation su-
perimposed on the attractor.(g)–(l) Perturbation only.
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In both cases, information must be associated with attracting
states. Furthermore, no matter how complicated or simple
the desired method of encoding, it must address the restric-
tive nature of the attracting set in the choice of toppling
rules.

Naively, one might expect that each site of a one-
dimensionalN-site BTW attractor could have eitherCi −1 or
Ci grains, and a good encoding scheme might be to associate
each site with a binary digit 0 or 1 of anN-digit binary word
of data. However, simple SEP analysis demonstrates that the
attractors are actually restricted to piles that haveno more
than one site withCi −1 grains(with all the rest havingCi
grains). Thus instead of the 2N attractors needed to encode an
arbitrary N-digit binary word, a one-dimensionalN-site
BTW sandpile has onlyN+1 attractors.(While this restric-
tion may complicate the association of information with at-
tractors, it may also be desirable in certain applications.)

However, straightforward SEP analysis also demonstrates
that two-dimensionalN-site BTW sandpiles can encode any
N-digit binary word in anN-site pile because all 2N piles B
with Bi P hCi −1,Cij are indeed attractors. Furthermore, these
rules can be modified to encode any level of information by
appropriately scaling the toppling rules. IfDBTW represents
the two-dimensional BTW rules anda is a whole number,
then the attracting set ofD8=aDBTW with Ci8=aCi includes
all s2adN piles B8 with Bi8P haCi −2a+1,aCi −2a
+2, . . . ,aCij. Thus if the unscaled sandpile encodes two lev-
els of information, then the scaled sandpile encodes 2a lev-
els of information. In the following examples, we use the
scaled two-dimensional BTW rules to encode a large range
of pile heights as pixel grayscale values that compose im-
ages.

B. Data protection

The resilience of attractors to large perturbations suggests
the possibility of exploiting SEP’s to protect data. For ex-
ample, if information were encoded in the attractor of a sand-
pile, and this sandpile were coupled to its environmentsolely
via the addition of whole number combinations of the top-
pling rulesnD, the information would be completely robust
to all outside influence, including noise. In fact, given suffi-
cient time, the natural dynamics would heal the perturbed
attractor of all corruptions.

We demonstrate this self-healing property in Fig. 6, where
the information of a 20-level gray scale image is encoded by
manipulating the heights of the sites in the pile. To ensure
that this is an attractor of our sandpile, we use the two-
dimensional BTW rules scaled by a factor ofa=10. Specifi-
cally, the brightness of each site in Fig. 6 is proportional to
the number of grains at that site, resulting in a three-
dimensional sculpture of the image. We then corrupt this
image in the second frame(b) by adding a random whole
number combination of scaled BTW rules. In the subsequent
relaxation process(c)–(f), the sandpile completely heals it-
self of this corruption demonstrating the basic efficacy of this
phenomenon.

C. Data encryption

This property also suggests a method of encryption. In
Fig. 7, the same image has been corrupted, again by adding a

random combination of scaled BTW rules. The perturbation
is complicated enough to obscure the information stored in
the attractor, thereby encrypting it. Decrypting this informa-
tion is trivial if one knows theD with which the information
was corrupted: simply relax the pile. However, without the
properD, relaxation does not restore the image. We illustrate
this in Fig. 7 by relaxing the encrypted image with aslightly
different D. (Instead of removing 40 grains during each
topple, the toppling ruleD8 removes 41; this additional grain

FIG. 6. (a) A grayscale image encoded, as a three-dimensional
sculpture, in a 1283128 attractor.(b) The attractor corrupted by a
random superpositionnD of scaled BTW rules.(c)–(f) The natural
dynamics of the sandpile heals the corrupted attractor. Grays code
heights and colors(online) code differences from original pile, with
reds lower and blues higher.

FIG. 7. (a) A grayscale image encoded in an attractor, as in
Fig. 6. (b) The attractor corrupted by a random superpositionnD of
scaled BTW rules(thereby saturating our fixed grayscale palette).
(c)–(f) The sandpile relaxes viaslightly different toppling rulesD8
to an unrecognizable attractor.
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is then passed to the site on the right, destroying the symme-
try of the originalD.) Although this is only a slight modifi-
cation, the final state does not resemble the original image.
SinceD can in general be highly nontrivial, with significant
amounts of nonlocal communication, it may be possible to
exploit the cryptographic properties of this phenomenon to
produce an efficient and effective encryption scheme. In par-
ticular, the decoding could be done in parallel via distributed
processors, precisely because the Abelian nature of the top-
pling makes the order of toppling irrelevant. Furthermore,
the transformation matrixD could be encoded at the hard-
ware level. Fast distributed processing in hardware makes
straightforward evolution a practical alternative to imple-
menting a truly a vast lookup table connecting inputs and
outputs for the sandpile automaton considered as a finite-
state machine.

VII. SUPERPILES

Self-erasing perturbations are not confined to Abelian
sandpile automata. For example, there exists a class of
related cellular automata for which the addition of any com-
bination of positivepoint perturbations is self-erasing. For
every sandpileP, define the correspondingsuperpile Q
such that Q=PD−1. Mirroring the sandpile toppling
Pi =Pei

T.Ci ⇒TsPd=P−eiD, define the superpile toppling
QDei

T.Ci ⇒TsQd=Q−ei. Thus for every self-erasing per-
turbationnD of the sandpile, there is a corresponding self-
erasing perturbationn of the superpile. Therefore a superpile
attractor is robust toall positive perturbations—making them
more promising candidates for the robust encoding of infor-
mation than sandpiles. Although the superpile thresholding
may appear complicated, it is easy to describe the BTW
superpile toppling: if the discrete Laplacian at a site exceeds

the critical value, reduce the site by one. Furthermore, we
expect that self-erasing perturbations exist for generalized
Abelian sandpiles, such as those studied by Chau and Cheng
[12].

VIII. CONCLUSIONS

By generalizing the traditional seeding of Abelian sand-
pile automata, we have revealed an interesting phenomenon,
the existence of a broad and flexible class of nontrivial self-
erasing perturbations. We have shown how the conceptual
framework provided by SEP is useful in the study of these
automata. Furthermore, our demonstration of another au-
tomaton that also displays SEP’s suggests that this phenom-
enon may prove more broadly applicable.

More practically, SEP’s might be used to secure informa-
tion. SEP’s provide a mechanism by which data might be
protected from certain types of noise through the self-healing
properties of the sandpile attractors. By recognizing that the
addition of noise can be an encryption mechanism, this abil-
ity to self-heal becomes an ability to decode encrypted infor-
mation, provided one has the correct toppling rulesD, the
key to the encryption. More speculatively, if practical physi-
cal analogs could be found, this phenomenon might enable
the construction of machines that are impervious to normal
wear and tear. The operation of such machines would be
dynamical attractors whose basin of attraction would include
all perturbations away from nominal performance.
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